ULTRASONIDO

El ultrasonido es una onda sonora cuya frecuencia supera el límite perceptible por el oído humano (es decir, el sonido no puede ser captado por las personas ya que se ubica en torno al espectro de 20.000 Hz). Existen múltiples aplicaciones del ultrasonido. A nivel industrial, permite medir distancias o desarrollar ensayos no destructivos, por ejemplo. Otro uso muy frecuente tiene lugar en el campo de la medicina.

ULTRASONIDO GENERAL

El ultrasonido utiliza ondas sonoras para producir fotografías de las estructuras internas del cuerpo. Se utiliza para ayudar a diagnosticar las causas de dolor, hinchazón e infección en los órganos internos del cuerpo, y para examinar al bebé en una mujer embarazada, y el cerebro y las caderas en los niños pequeños. También se utiliza para ayudar a guiar biopsias, diagnosticar condiciones del corazón y evaluar el daño luego de un ataque al corazón. El ultrasonido es seguro, no es invasivo y no utiliza radiación ionizante.

Este procedimiento requiere poco o nada de preparación especial. El doctor le dará instrucciones sobre cómo prepararse, incluyendo si debe abstenerse de comer o beber de antemano. Deje las joyas en casa y vista ropa suelta y cómoda. Se le podría pedir que se ponga una bata.

Cuando se somete un líquido a ultrasonidos se generan ciertas cavidades que, una vez que colapsan, alcanzan temperaturas de 30 mil grados Celsius y tiene lugar el fenómeno denominado sonoluminiscencia, durante el cual se produce la emisión de luz. Algunas investigaciones intentan demostrar que en dichas cavidades puede tener lugar la fusión fría, una reacción nuclear de fusión que se da a temperaturas muy por debajo de las necesarias para producir una reacción termonuclear.

Durante un tratamiento de fisioterapia, el ultrasonido es utilizado muy frecuentemente. Entre sus beneficios con respecto al uso de calor o frío se encuentra que no produce ningún efecto físico perceptible por el paciente, no genera ninguna sensación inmediata. Sin embargo, no se trata de un placebo: sus efectos curativos han sido probados a nivel científico.

Con respecto a su trabajo en el organismo, se utiliza un equipo capaz de transferir ondas mecánicas de una frecuencia superior a las del sonido a través de un gel, el cual permite que se propague y transmita energía (calor) debido a las vibraciones producidas por las ondas.

Las vibraciones dan lugar al movimiento de las células, mejorando la cicatrización y, al mismo tiempo, aumentando la temperatura de la región en la que se aplica el ultrasonido. Sin embargo, como se señaló anteriormente, los pacientes no perciben este cambio térmico; la razón reside en que hay muy pocos receptores de calor en las profundidades de los tejidos.

Con respecto a los criterios para la aplicación del ultrasonido en tratamientos fisioterapéuticos, se cuentan el tiempo, las dimensiones de la superficie a tratar y las del cabezal (el primero de estos parámetros depende de los dos restantes). En general se realizan aplicaciones que duran entre 2 y 6 minutos y tan solo a lo largo de las primeras sesiones, dado que su objetivo principal es reducir la inflamación, que no suele durar más de 5 días, y contribuir con la fibroplasia (generación de tejido fibroso durante la cicatrización), que no supera las 3 semanas.

Dependiendo del tiempo de cicatrización de cada paciente, entre otros factores personales, la cantidad de sesiones de ultrasonido varía. En promedio, sin embargo, se estima que su uso no supera las 8 aplicaciones, a lo largo de 3 semanas.



HISTORIA Y EVOLUCIÓN

En 1942, en Austria, el psiquiatra Karl Dussik intentó detectar tumores cerebrales registrando el paso del haz sónico a través del cráneo. Trató de identificar los ventrículos midiendo la atenuación del ultrasonido a través del cráneo, lo que denominó hiperfonografía del cerebro.

En 1947, el doctor Douglas Howry detectó estructuras de tejidos suaves al examinar los reflejos producidos por los ultrasonidos en diferentes interfases.

En 1949 se publicó una técnica de eco pulsado para detectar cálculos y cuerpo extraños intracorpóreos.

En 1951 hizo su aparición el ultrasonido compuesto, en el cual un transductor móvil producía varios disparos de haces ultrasónicos desde diferentes posiciones y hacia un área fija. Los ecos emitidos se registraban e integraban en una sola imagen. Se usaron técnicas de inmersión en agua con toda clase de recipientes: una tina de lavandería, un abrevadero para ganado y una torreta de ametralladora de un avión B-29.

En 1952, Douglas Howry, Dorothy Howry, Roderick Bliss y Gerald Posakony publicaron imágenes bidimensionales del antebrazo, en vivo.1​

En 1952, John J. Wild y John Reid publicaron imágenes bidimensionales de carcinoma de seno, de un tumor muscular y del riñón normal. Posteriormente estudiaron las paredes del sigmoide mediante un transductor colocado a través de un rectosigmoideoscopio y también sugirieron la evaluación del carcinoma gástrico por medio de un transductor colocado en la cavidad gástrica.2​

En 1953, Lars Leksell, usando un reflectoscopio Siemens, detectó el desplazamiento del eco de la línea media del cráneo en un niño de 16 meses. La cirugía confirmó que este desplazamiento era causado por un tumor. El trabajo fue publicado sólo hasta 1956. Desde entonces se inició el uso de ecoencefalografía con M-MODE.

En 1954, Ian Donald hizo investigaciones con un detector de grietas, en aplicaciones ginecológicas.

En 1956, Wild y Reid publicaron 77 casos de anormalidades de seno palpables y estudiadas además por ultrasonido, y obtuvieron un 90 por ciento de certeza en la diferenciación entre lesiones quísticas y sólidas.

En 1957, el ingeniero Tom Brown y el Dr. Donald, construyeron un escáner de contacto bidimensional, evitando así la técnica de inmersión. Tomaron fotos con película Polaroid y publicaron el estudio en 1958.

En 1957, el Dr Donald inició los estudios obstétricos a partir de los ecos provenientes del cráneo fetal. En ese entonces se desarrollaron los cálipers (cursores electrónicos).

En 1959, Satomura reportó el uso, por primera vez, del Doppler ultrasónico en la evaluación del flujo de las arterias periféricas.

En 1960, Donald desarrolló el primer escáner automático, que resultó no ser práctico por lo costoso.

En 1960, Howry introdujo el uso del Transductor Sectorial Mecánico (hand held scanner).

En 1962, Homes produjo un escáner que oscilaba 5 veces por segundo sobre la piel del paciente, permitiendo una imagen rudimentaria en tiempo real.

En 1963, un grupo de urólogos japoneses reportó exámenes ultrasónicos de la próstata, en el A-MODE.

En 1964 apareció la técnica Doppler para estudiar las carótidas, con gran aplicación en Neurología.

En 1965 La firma austriaca Kretztechnik asociada con el oftalmólogo Dr Werner Buschmann, fabricó un transductor de 10 elementos dispuestos en fase, para examinar el ojo, sus arterias, etc.

En 1966, Kichuchi introdujo la "Ultrasonocardiotomografía sincronizada", usada para obtener estudios en 9 diferentes fases del ciclo cardiaco, usando un transductor rotatorio y una almohada de agua.

En 1967, se inicia el desarrollo de transductores de A-MODE para detectar el corazón embrionario, factible en ese entonces a los 32 días de la fertilización.

En 1968, Sommer reportó el desarrollo de un escáner electrónico con 21 cristales de 1,2 MHz, que producía 30 imágenes por segundo y que fue realmente el primer aparato en reproducir imágenes de tiempo real, con resolución aceptable.

En 1969 se desarrollaron los primeros transductores transvaginales bidimensionales, que rotaban 360 grados y fueron usados por Kratochwil para evaluar la desproporción cefalopélvica. También se inició el uso de las sondas transrectales.

En 1970 Kratochwill comenzó la utilización del ultrasonido transrectal para valorar la próstata.

En 1971 la introducción de la escala de grises marcó el comienzo de la creciente aceptación mundial del ultrasonido en diagnóstico clínico.

1977 Kratochwil combino el ultrasonido y laparoscopia, introduciendo un transductor de 4.0 MHz a través del laparoscopio, con el objeto de medir los folículos mediante el A-MODE. La técnica se extendió hasta examinar vesícula, hígado y páncreas.

En 1982 Aloka anunció el desarrollo del Doppler en color en imagen bidimensional.

En 1983, Lutz usó la combinación de gastroscopio y ecografía, para detectar CA gástrico y para el examen de hígado y páncreas.

En 1983, Aloka introdujo al mercado el primer Equipo de Doppler en Color que permitió visualizar en tiempo real y en color el flujo sanguíneo.

Aunque ya se obtienen imágenes tridimensionales, el empleo de tal tecnología ha sido desaprovechado pues se ha limitado a usos puramente "estéticos" para estimular a las madres a ver sus hijos en tercera dimensión, pero no para mejorar el diagnóstico.

En 2017, Jan Tesarik introdujo la “Histeroscopia ultrasonográfica virtual” para detectar, en 3 dimensiones, anomalías de la cavidad uterina sin entrar en la matriz, igual de precisa y menos invasiva que la histeroscopia convencional3​ y posteriormente aplicó la misma técnica al estudio de las trompas falopianas (histerosalpingoscopia virtual), la cavidad de folículos ováricos (foliculoscopia virtual) y sacos gestacionales (embrioscopia virtual).

UTILIDAD

El ultrasonido se usa para ayudar a los médicos a diagnosticar síntomas tales como:
  • Dolores
  • Hinchazón
  • Infección
El ultrasonido es una forma útil de examinar muchos de los órganos internos del cuerpo, incluyendo en forma enunciativa y no limitativa:

  • Corazón y vasos sanguíneos, incluyendo la aorta abdominal y sus principales ramificaciones
  • Hígado
  • Vesicular biliar
  • Bazo
  • Páncreas
  • Riñones
  • Vejiga
  • Útero, ovarios y niño no nato (feto) en pacientes embarazadas
  • Ojos
  • Glándula tiroides y glándula paratiroides
  • Escroto (testículos)
  • Cerebro en infantes
  • Caderas en infantes
  • Columna vertebral en infantes

ECOGRAFÍA 

Es uno de los procedimientos más populares vinculados al ultrasonido. La emisión de este tipo de sonidos dirigidos hacia un cuerpo permite formar una imagen que se utiliza con fines de diagnóstico. Un dispositivo conocido como transductor emite las ondas de ultrasonido hacia la masa en estudio y luego recibe su eco. Una computadora se encarga de convertir dicho eco en una imagen que se muestra en una pantalla.

Gracias a que no utiliza ningún tipo de radiación, la ecografía es usada para visualizar el feto que se está formando en el vientre materno. La colocación de un gel sobre la piel ayuda a la correcta transmisión del ultrasonido.

La ecografía es un procedimiento sencillo, a pesar de que se suele realizar en el servicio de radiodiagnóstico; y por dicha sencillez, se usa con frecuencia para visualizar fetos que se están formando. La ecografía es relativamente una prueba no invasiva en el que se usan vibraciones mecánicas con frecuencia de oscilación en el rango del ultrasonido, a diferencia de los procedimientos de radiografía, en los que se emplea radiación nuclear. Al someterse a un examen de ecografía, el paciente sencillamente se acuesta sobre una mesa y el médico mueve el transductor sobre la piel que se encuentra sobre la parte del cuerpo a examinar. Antes es preciso colocar un gel sobre la piel para la correcta transmisión de los ultrasonidos.

Actualmente se pueden utilizar contrastes en ecografía. Consisten en microburbujas de gas estabilizadas que presentan un fenómeno de resonancia al ser insonadas e incrementan la señal que recibe el transductor. Así, por ejemplo, es posible ver cuál es el patrón de vascularización de un tumor, el cual da pistas sobre su naturaleza. En el futuro quizá sea posible administrar fármacos como los quimioterápicos, ligados a burbujas semejantes, para que éstas liberen el fármaco únicamente en el órgano que se está insonando, para así conseguir una dosis máxima en el lugar que interesa, disminuyendo la toxicidad general.


TIPOS

Ecografía abdominal: La ecografía abdominal puede detectar tumores en el hígado, vesícula biliar, páncreas y en el interior del abdomen.

Ecografía vaginal: La ecografía vaginal sirve para estudiar el útero, detectando la posición, el tamaño o la presencia de miomas o pólipos; el endometrio, conociendo la fase del ciclo menstrual; y los ovarios, para detectar posibles quistes, embarazos ectópicos o para realizar un recuento folicular.

Ecografía de mama: La ecografía de mama se utiliza para diferenciar nódulos o tumores que pueden ser palpables o aparecer en la mamografía. Su principal objetivo es detectar si el tumor es de tipo sólido o líquido para determinar su benignidad. Las ecografías mamarias son recomendables cuando las mamas son densas o se necesita diferenciar la benignidad del tumor. 

En las mamas grasas son fáciles de detectar tumores en las mamografías, pero en las mamas densas (3-4) (Fibrosas) se necesitan análisis complementarios. La densidad de la mama varía con la edad por lo general, a mayor edad la mama es más grasa.

Ecografía transrectal: La ecografía médica para el diagnóstico del cáncer de próstata consiste en la introducción de una sonda por el recto que emite ondas de ultrasonido que producen ecos al chocar con la próstata. Estos ecos son captados de nuevo por la sonda y procesados por una computadora para reproducir la imagen de la próstata en una pantalla de vídeo. El paciente puede notar algo de presión con esta prueba cuando la sonda se introduce en el recto. Este procedimiento dura sólo algunos minutos y se realiza ambulatoriamente. La ecografía transrectal es el método más usado para practicar una biopsia. Los tumores de próstata y el tejido prostático normal a menudo reflejan ondas de sonido diferentes, por eso se utiliza la ecografía transrectal para guiar la aguja de biopsia hacia el área exacta de la próstata dónde se localiza el tumor. La ecografía transrectal no se recomienda de rutina como prueba de detección precoz del cáncer de próstata. La ecografía transrectal es también imprescindible en el estadiaje del cáncer colorrectal.

Ecografía Doppler: La ecografía doppler o simplemente eco-Doppler, es una variedad de la ecografía tradicional, basada por tanto en el empleo de ultrasonidos, en la que aprovechando el efecto Doppler, es posible visualizar las ondas de velocidad del flujo que atraviesa ciertas estructuras del cuerpo, por lo general vasos sanguíneos, y que son inaccesibles a la visión directa.6​ La técnica permite determinar si el flujo se dirige hacia la sonda o si se aleja de ella, así como la velocidad de dicho flujo. Mediante el cálculo de la variación en la frecuencia del volumen de una muestra en particular, por ejemplo, el de un flujo de sangre en una válvula del corazón, se puede determinar y visualizar su velocidad y dirección. La impresión de una ecografía tradicional combinada con una ecografía Doppler se conoce como ecografía dúplex.

Ecografía 3D y 4D: En los últimos tiempos se ha podido ver una revolución en el campo de la medicina materno-fetal. Esa revolución, además, no sólo ha afectado a la medicina en sí misma, sino que ha aportado a la sociedad la posibilidad de establecer una unión emocional con los neonatos mucho más profunda de lo que hasta ahora se creía posible, gracias a una calidad de imagen que permite ver el aspecto del futuro bebé en fotografía (3D) o en imagen en movimiento (4D).

Para lograrlo, mediante el ecógrafo, se emiten los ultrasonidos en cuatro ángulos y direcciones, pasando el emisor suavemente por la barriga del paciente, a la cual se le ha aplicado previamente un gel para mejorar la eficiencia del proceso. Los ultrasonidos rebotan y son captados por el ordenador, que procesa automáticamente la información para reproducir en la pantalla la imagen a tiempo real del bebé.

Ecografía cutánea: Esta técnica diagnóstica permite detectar tumores cutáneos, procesos inflamatorios, alteraciones ungueales, enfermedades del pelo y también es aplicable a la dermoestética. Utilizada por primera vez en Chile por la Dra. Wartsman, en España la técnica ha sido introducida por el Dr. Fernando Alfageme Roldán.


Comentarios